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Euler Solutions for Airfoils in Inhomogeneous
Atmospheric Flows

Caroline Weishaupl* and Boris Laschka®
Technische Universitit Miinchen, 85747 Garching, Germany

Inhomogeneous flows occuring naturally in the atmosphere and their influence on the flowfield around wing
profiles are examined. Inhomogeneous, in this context, means that at least one flow variable has a spatial gradient,
and, in particular, a gradient in the velocity component normal to the velocity vector is considered. Well-known
examples for such flows are shear winds, jet streams, low-level jet streams, the flow situation near the ground, and
microbursts. Numerical simulations are performed for a NACA 0012 airfoil using a finite volume Euler code. They
focus on two cases, namely, an idealized shear wind for parameter studies and a microburst. For the idealized shear
wind, a linear velocity change is assumed. In the subsonic case, the additional velocities on the lower and upper
side of the airfoil result in a positive additional lift and a negative pitching moment around the 25% axis. In the
transonic regime, the effect on shock strength and shock position is dominant. For simulation of the flight through
a microburst, a potential model for the velocity field, consisting of a vortex ring parallel to the ground and a vortex
ring of same strength mirrored at the ground, is applied. The chosen parameters simulate the Dallas-Fort Worth
microburst. The analysis shows that the characteristics of the lift and moment coefficient follow that of the vertical
velocity component, induced by the microburst. Rapid changes in the pitching moment with severe consequences

on longitudinal stability occur.

Nomenclature

A = Jacobian matrix for primitive variables (¢ direction)

a = altitude

c = speed of sound, coefficient

Cly Cm = lift coefficient, pitching moment coefficient

c, = pressure coefficient

e = total energy density, p/(k — 1) + p(u®> +v%)/2

F,G = fluxes in curvilinearcoordinates & and

J = determinant of the Jacobian of grid transformation

l = length, airfoil chord

M = Mach number

My = flight Mach number

M;, M, = lower and upper Mach number in the idealized
shear wind

M, = vertical component of Mach number

n = normal vector

P, P;l = matrix of the right and left eigenvectorsof the
nonconservative Euler equations

p = pressure

0 = vector of conservative variables times J

0 = vector of primitive variables times J

q = dynamic pressure

t = time

t = tangential vector

u,v = velocity components in Cartesian coordinates
x and y

v = velocity vector

w = vector of the characteristic variables

Xim = moment reference point

Xp, Vp = position of the airfoil

Xo, X1 = start and end position for the flight through

the microburst
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Yo, V1 = lower and upper boundary of the idealized
shear wind
= angle of attack
Ac, = differencein pressure coefficient, ¢, i = Cpiom
AM = change in incoming Mach number in the idealized
shear wind
AM/Ay = vertical gradient of Mach number in the idealized
shear wind
K = ratio of specific heats _
A = diagonal matrix of the eigenvaluesof A
En = curvilinear coordinates
0 = density
T = transformed time due to coordinates& and n
T. = characteristictime
v = stream function

Introduction

URING flight, aircraft may be affected by inhomogeneous
flows produced naturally in the atmosphere. These flows are
difficultto foreseeand are, therefore, of greatimportanceconcerning
flight safety. Because of the hazard of windshears for flight safety,
the International Civil Aviation Organization has introduced cate-
gories dependingon the shear wind velocity gradientdu /0y (Refs. 1
and 2). Gradients in the range of 0.066-0.13 s~! are significant; in
the range 0.13-0.2 s~, difficult; and above 0.2 s~!, dangerous.
Phenomena of interest in this context are, for example, shear
winds, jet streams, low-level jet streams, boundary layers, and mi-
crobursts. Jet streams are regions with strong wind occuring in the
upper troposphere and stratosphere? In comparison to jet streams,
the gradients occurring in so-called low-level jet streams are con-
siderably higher and reach valuesup to 0.15 s~!. This phenomenon
occursin altitudeslower than 1.5 km (Ref. 4). Near the ground, inho-
mogeneousconditionsoccur as well. A turbulentboundary layer de-
velopsbetweenthe gradientwind and the surface, where the velocity
decreases to zero.” Microbursts often come up in thunderstorms®
The associated flowfield pattern is characterized by a strong down-
wind, which impacts the ground and bursts out, causing strong hori-
zontal winds.” During the flight through a microburst, the pilot faces
a rapid change from headwind to tailwind combined with a strong
downdraft. Many severe accidents in the past are connected with
microbursts. Two of the most fatal ones are the crash of an L-1011
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during landing in Dallas in August 1985%~1% and that of a Boeing
727 in New York in June 19755

The awareness that windshears can become dangerous was re-
flectedindifferentresearchactivitiesin this field. Numerous weather
studies like the 1982 Joint Airport Weather Studies were con-
ducted to obtain extensive wind data in microbursts.'"'> Windshear
warning systems were developed.!® Another important point for
meteorology and aviation is the modeling of windshears, especially
of microbursts. Concerning flight problems, relatively simple mod-
els, describing the velocity distribution in the microburst, are de-
sirable. For the irrotational flow in the microburst, models based
on the potential theory such as those using vortex rings are suit-
able. Such models were developed by several authors’!4~!7 The
parameters of the models have to be adapted to the measured data
in real microbursts. In the field of flight mechanics, problems like
the optimal flight path,'®!° possible escape strategies,? and aircraft
performance? are treated. Concerning the interference between the
flowfield and the aircraft, apart from some fundamental studies, for
example, those of Ruden,”' Tsien,?? and Weissinger?® only a few

investigations, mainly based on experimental work,** exist up to

now. An overview is given by Kiichemann 2

Because of the aforementionedlack of investigationsfor inhomo-
geneous flows, this paper deals with two types of inhomogeneous
flows, namely, a shear wind and a microburst. Shear winds charac-
terized by a velocity gradientnormal to the flow vector are rotational
flows and cannotbe simulated appropriately with potential methods.
The steady flowfield of a microburstcan be modeled as irrotational,
but during the airfoil motion through the microburst unsteady con-
ditions occur. In this case, straightforward potential methods are
not widely available. Furthermore, for the simulationsit is assumed
that viscous effects associated with the velocity gradients of the
incoming flowfield do not significantly change the aircraft pres-
sure distributions and aerodynamic coefficients. Therefore, the Eu-
ler equations, describing inviscid rotational compressible unsteady
flows, are the governing equations. The calculations are performed
for a NACA 0012 airfoil using a finite volume Euler code with
total variation diminishing (TVD) feature. Elliptic grid generation
is used. After the validation, steady and unsteady results are given
for an idealized shear wind with a linear velocity change, and ex-
tensive parameterstudiesare conducted. Subsequently, the unsteady
flow conditionsduring the horizontal flight through a microburstare
simulated.

Numerical Method

Solution of the Euler Equations

For two-dimensional flow, the conservative form of the unsteady
Euler equations can be written in curvilinear coordinates & and n
with unsteady metric terms (see Refs. 27 and 28),

9 G
Q +

35 =0 (1)

with the vector of the conservative flow variables Q and the flux
vectors F and G
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U and V denominate the contravariant velocities

U=&u+&v+§ =0, V=nu+nv+n =0,

3)

and J the determinant of the Jacobian of the coordinate transfor-
mation”

J = det(J) = det[zzi((g:—;}:g} = XY, — X, @)
The metric terms can be written as?-3
£.=J"y, £ =—J""x, § = —xb = yedy
Ny = —J 7 ye, ny=J""x, M= =X — Yoy (5)

For the numerical solution, a finite volume formulation is chosen.
Explicit time discretizationis applied. The maximum possible time
step is given by the Courant-Friedrichs-Lewy criterion. Because
of this numerical limitation, the physical resolutionin time is high
enough. For the solution, dimension splitting is applied under the
assumption that the fluxes normal to the cell faces are nearly inde-
pendent from the fluxes parallel to the cell faces.?” For the numerical
flux at the cell face the TVD formulation of Yee, Roe and Davis®!
is used. To guarantee second-order discretization in space and to
reduce to first order in regions of discontinuities,a minmod limiter
is introduced. Furthermore, an entropy function avoids nonphysical
expansion shocks.3!32

Boundary Conditions

To determine the boundary values, one can conclude from the
characteristic theory that a physical boundary condition is neces-
sary if the characteristicpoints into the evaluationregion, otherwise
anumerical boundary condition must be formulated. The character-
istic equations are used as basis for both, the boundary conditions at
the body and at the far field. Dealing with inhomogeneousflows, one
cannot assume a priori local one-dimensional flow at the far field.
Therefore, the far-field boundary conditions are formulated using
the multidimensional characteristic equations. For that purpose, it
is suitable to start from the Euler equations in primitive variables
0=1J (p,u,v, p)T (Refs. 33 and 34),

20 90 20
E Ag-l—Ba—n—O 6)

with the Jacobianmatrices A and B. After diagonalizing,one obtains

20 00 00

—= +PAP' == +P AP, = =0 7
ar e g an ™

with P as matrix of the right eigenvectors,P~! that of the left eigen-
vectors, and A as diagonal matrix of the eigenvalues. Given the
boundary § = const, the Euler equations are multiplied with P, LIf

E’l and P are assumed constant, the following equation can be
written for the boundary & = const:

IP;'0 aP;'0 3
(EQ)+AE (EQ)—l—P‘PAP’ e _, @)
at 0& an
Analogously, for the boundary 7 = const, it follows that
PO I(P;'0 3
(8” Y +A (8” Y +P'P AP — Q =0 (9
T n

For the regarded boundary, the normal vectorn = (ii,, i1,)" point-
ing into the evaluation regime and the tangential vector ¢ in coun-
terclockwise direction are introduced. Then the characteristic vari-
ables, which result from the product P 'Q, can be written as

w, p —p/c
w, Ay — 1, v

W=7 ws |~ ! (1/«/5)[n-v+p/(p6)] (19
e (1/V2)[=n v + p/(po)]
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With this notation, the characteristic equations in two-dimensional
form can be derived from Eqs. (8) and (9), respectively,”

a
(—+V,-V>w1 =0
ot
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with v, = (u—x,,v—y,)" and V =(3/0x, 3/9y)". These equa-
tions are the basis for the applied boundary conditions, taking into
account the gradient of the flow variables along the boundary. For
the determination of the boundary values, we distinguish between
inflow and outflow conditions. For subsonic two-dimensional flow,
for the inflow case, three characteristicspoint into the flowfield and
oneoutward. Analogously, for the outflow case, three characteristics
pointoutward and one inward. Depending on the direction of the re-
spective characteristicEqgs. (11) are discretized. If the characteristic
points inward, the freestream values are used, if the characteristic
points outward, the values of the first cell inside the field are used.
From an adequate combination of the discretized equations, the
boundary values for pressure, density, and the velocity components
result. These are given completely in Ref. 32.

At the body, the kinematic boundary condition vguq # =V conour
has to be satisfied. This is the physical boundary condition for the
characteristicpointing into the evaluationregion. For the other three
characteristics,numerical boundary conditionsare applied. The val-
ues of the according characteristic variables are set equal to the
values in the first cell inside the evaluation region.*

Validation

Experimental and numerical data for incompressible flow by
Ludwig and Erickson®* is taken for validation of the code applied to
inhomogeneous flows. The investigationsare performed for a sym-
metrical Joukowsky airfoil with 17% relative thickness. The theory
is based on the solution of the equation for the stream function in
two-dimensional incompressible inviscid shear flow VW = f(¥)
(Ref. 24). In addition to the theoretical studies, results of corre-
sponding wind-tunnel tests are available.

A piecewise linear velocity profile acting on the Joukowsky air-
foil positionedin a channelis considered (Fig. 1). The given lengths
are expressed with respect to the airfoil chord /. The grid used con-
sists of 5800 cells with 60 cells for each airfoil side and a distance
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Fig. 1 Geometry and parameters of the validation case for a
Joukowsky airfoil.2*
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b) Inhomogeneous flow: Euler, ¢; = 0.8720; Tsien,*? ¢; = 0.8018

Fig. 2 Pressure distribution ¢, for the validation case Ref. 24
(Joukowsky, § = 17% and o = 5.7 deg).

of the first off-body grid points of 0.001/. For the numerical sim-
ulation with an Euler code for compressible flow, the freestream
conditions (M,, =0.1075, M, =0.0967, and M,,,, =0.1182) of
Ref. 24 are transformedto a higher Mach number because otherwise
convergence problems occur in the simulation. The transformation
ensuresthat the flow remains approximatelyincompressibleand that
the shear wind is conservedin level and gradient. Therefore, the sim-
ulations are conducted for the parameters M,, =0.3, M,;, =0.27,
M.« =0.33,a=0.5, and @ =5.7 deg (see Fig. 1). The altitude a
is given for the airfoil midchord. Additionally, the results of the
Euler simulations are transformed with the Prandtl-Glauert rule to
the original case.

To begin with homogeneousflow, the pressure distributionsof the
Euler code and of the theory of Ref. 24 agree very well (Fig. 2a).
Because of the velocity gradient, in the inhomogeneous case the
pressureminimum increaseson the upper side and decreasesslightly
on the lower side (Fig. 2b). The results of the Euler code and the
theoreticaland experimentalresults of Ref. 24 again show very good
agreement. Possible reasons for the small deviations can be viscous
effects in the experiment that cannot be reproduced by the Euler
code or compressible flow effects resulting from the Euler code.

Furthermore, these numerical results can be compared with the
exact solution for symmetrical Joukowsky airfoils in shear flow pre-
sented by Tsien.”? Based on a suitable stream function with respect
to a linear velocity profile, the lift and moment coefficient can be
calculated as function of the airfoil thickness, the angle of attack,
and the shear wind gradient. The method of Tsien and the simula-
tions performed here differ mainly in the following two ways: First,
instead of the linear velocity profile of Tsien, here piecewise linear
velocity or Mach number profiles, respectively, are considered.
Second, the exact solution of Tsien is valid for incompressibleflow,
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but here compressible flow is the point of interest. In spite of these
differences, the exact values given by Tsien can be given as a basic
reference for the simulations. Considering the aforementioned ve-
locity gradient, a lift coefficient of ¢; = 0.8018 results for the 17%
Joukowsky airfoil at « = 5.7 deg. The value obtained from the
Euler simulation is ¢; = 0.8720. With regard to the mentioned dif-
ferences between the two approaches, the agreement of the results
is satisfying. Further validation cases are given in Ref. 32.

Results

The subsequentinvestigationsfocus on two important cases of in-
homogeneousflows. First, an idealized shear wind with linear veloc-
ity changeis analyzedin the subsonic and transonic velocity regime
with the dominant parameters varied. Second, the horizontal flight
through a microburst is simulated. All simulations are performed
for a NACA 0012 airfoil. The steady simulations are assumed to be
converged if the maximum occurring density change falls below the
limit of 107, More details and further results are given in Ref. 32.

For grid generation, an elliptic Poisson algorithm s applied 3~
With a multiblocktopology,itis possibletorealize a C topologynear
the wing and at the same time linear far field boundaries (Fig. 3a).
The standard 12-block grid consists of 5300 cells with 60 cells on
each airfoil side and a distance of the first off-body grid points of
0.005! (Fig. 3b). For the farfield distance, 20 chords are chosen. To
consider the influence of the grid resolution, a fine grid with 120
cells on each airfoil side, a 0.0025/ distance of the first off-body
grid points and 21,200 cells are employed.

Idealized Shear Wind

To study the general influence of inhomogeneousincoming flow
on an airfoil, the following idealized conditions are assumed: The
airfoil is positioned in a steady shear wind field with the Mach
number of incoming flow changing linearly from 0 to AM in the
region[yy, ¥;]. For asufficientresolution,the grid used is optimized,
with the grid lines concentratedin the shear wind region. The airfoil
moves horizontally with the flight Mach number M, and in the
unsteady case an additional vertical velocity component M, occurs
(see Fig. 4a). For the numerical simulation, the flight Mach number
and the shear wind can be superposed to the Mach number M (y)
dependent on the altitude y with
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b) Detail near the airfoil
Fig. 3 NACA 0012 airfoil 12-block grid.
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b) Interpretation for numerical simulation
Fig. 4 Flow situation in the idealized shear wind.

My =M, where y < yg
M) = \Mr+ 1y —y0)/( —Y0)IAM where y, <y <y
Mp+ AM = M, where y >y, (12)

M, denominates the Mach number below the shear wind region and
M, the Mach number above this region (Fig. 4b). All values for y
are expressed with respect to to the airfoil chord /.

For describing the obtained results, it is necessary to choose a
useful reference Mach number. All of the following results for the
idealized shear wind are related to the constant horizontal flight
Machnumber M = M,. This has to be consideredfor interpretation
of the pressure, lift,and moment coefficient. Because of the constant
reference Mach number M, local higher Mach numbers lead to
a higher dynamic pressure and, consequently, to higher coefficient
values than for referenceto the respectivelocal Mach number M (y).
To obtain the value of the coefficient ¢ with respect to the varying
incoming Mach number M (y) from the value referred to My, the
following formula can be applied

M = [qu, [aun e = [ME/M*]e  (13)

Both regions, the subsonic and transonic flow regimes, are investi-
gated with the flight Mach numbers M =0.4 and 0.7, respectively.
For the change of Mach number in the shear wind, a high value of
AM =0.1 is chosen to get significant effects. Realistic gradients
occurring in the atmosphere are much smaller. The lower bound of
the shear wind lies in all cases at yp = 2. The basis for the performed
parameter variationsis the followingreference case: The shear wind
covers a vertical distance of Ay =y, — yo = 0.5, which corresponds
to a gradient of AM /Ay =0.2. The airfoil is positioned with zero
angle of attack in half-altitude of the shear wind.

First, the flow situation due to the idealized shear wind is re-
garded in the steady case for the subsonic regime. The distribu-
tion of the pressure coefficient ¢, for the reference case is com-
pared to homogeneousincoming flow with the mean Mach number
M., = (M;+ M,)/2=0.45 (Fig. 5). For consistency, the values be-
longing to the homogeneous case are also referred to My =0.4.
Because of the positive shear wind gradient, the pressure minimum
is increased on the upper side and decreased on the lower side in
comparison to the homogeneous flow. Therefore, a positive addi-
tional lift and a negative additional moment around x,, = 0.25 re-
sult. To estimate the influence of the grid resolution, the reference
case is also simulated with a fine mesh consisting of 21,200 cells
compared to 5300 cells of the standard grid used. The pressure dis-
tributions for the standard and the fine grid (Fig. 5) show only small
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Fig. 5 Steady pressure distribution c, for the NACA 0012 airfoil in
subsonic inhomogeneous flow (My = 0.4, AM/Ay = 0.2,and a = 0 deg).
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Fig. 6 Steady coefficients in subsonic inhomogeneous flow (M, = 0.4,
M, =0.5,and o = 0 deg) for different shear wind gradients AM/Ay.

deviations in the region of the pressure minimum on the lower and
the upper side and the recompression region at the trailing edge.
The lift and moment coefficient for the fine grid are ¢, =0.1012 and
¢, =—0.01505, in comparison to ¢; =0.0965 and ¢,, = —0.01426
for the standard grid.

The shear wind gradientand the positionof the airfoil in the shear
wind are important parameters. Concerning steady flow, the differ-
ence of the pressure distribution Ac, =¢p;0n — Cprom DEtWeen the
inhomogeneousand homogeneous(M,, = 0.45) caseis regarded for
several gradients,namely, AM /Ay = 0.1,0.2,and oo (see Fig. 6a).
With increasing gradient, the difference Ac,, grows, whereby on the
upper side the deviation is bigger than on the lower side. Above a
certain gradient value, only small changes occur in the flow around
the airfoil, if the gradientis increased further. Therefore, the lift and
moment coefficient remain then nearly constantup to the limit value
belonging to the Mach number jump AM /Ay = oo (see Fig. 6b).
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Fig. 7 Steady lift and moment coefficients ¢; and c,, for subsonic in-
homogeneous flow (M; = 0.4, M,, = 0.5, a = 0 deg, and AM/Ay = 0.2)
for different airfoil positions yp.

With regard to the influence of the airfoil position yp, a positive
additional lift and a negative moment already appear in the vicinity
of the shear wind region (Fig. 7). As they approach the center of the
shear wind, these values increase up to the extreme value.

In the next step, an additional vertical motion of the airfoil with
the vertical Mach number component M, is regarded. For the sim-
ulation of the vertical motion the airfoil has to be moved through
the inhomogeneous flowfield. The grid has to be adapted to the
actual airfoil position at each time step. This adaptation can be per-
formed in the following two ways: In the first adaptation, only the
airfoil itself moves within the grid, whereby the far-field bound-
aries remain fixed in space. Consequently, the grid is deformed
during the motion. This method is suitable for small distances or
if only parts of the body move. The alternativeis to move the whole
grid with the airfoil vertical velocity through the flowfield. In this
case the grid remains undeformed. For the simulation of the motion
through inhomogeneous fields, long distances have to be covered.
Therefore, in this case a motion of the whole grid through the in-
homogeneous field is more suitable than the relative motion of the
airfoil inside the grid to guarantee constant grid quality and to avoid
large cell deformations. Depending on the instantaneous position,
the values of the flow variables at the far-field boundaries are then
evaluated from Eq. (12). From there, the information propagates
into the computational domain. The regarded motions start from
y=0 and end at y =5. As the initial field for the unsteady simu-
lation, the steady-state result at y» =0 is used. Without a suitable
start solution, oscillations occur in the unsteady lift and moment
coefficient in the beginning. With regard once again to the refer-
ence case (AM/Ay=0.2 and o =0 deg), the unsteady behavior
for two vertical Mach numbers M, =0.01 and 0.02 is compared
with the quasisteady behavior. As mentioned earlier, the constant
reference Mach number M = M, is used. The unsteady character-
istics for the lift and moment coefficient (Fig. 8) can be subdivided
into three parts: 1) the response to the Heaviside function in the ver-
tical Mach number starting from the steady values for y, =0 (Fig.7)
and the motion through the homogeneousfield with M (y) = M;, 2)
the passing through the shear field, and 3) the motion through the
homogeneous part with M (y) = M,,. The following general effects
can be detected: Because of the vertical motion upwards and the
corresponding relative flow downwards, a negative lift coefficient
occurs during the motion. Therefore, the values of ¢; and c¢,, change
immediately after the start of the unsteady simulation. In the shear
wind region, the local negative angle of attack due to the vertical
motion decreases because of the higher horizontal velocity M (y).
Therefore, additionally a positive lift and a negative moment come
up in this region. At the same time, the increasing dynamic pressure
leads to higherabsolute values of the coefficients regarding the con-
stant reference Mach number. Additionally, it has to be considered
that the force componentin the horizontal directionis given as the
drag coefficient and that in the vertical direction as the lift coeffi-
cient, although the angle of attack varies during the motion. With an
increase in the vertical Mach number M,, the shear wind induced
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and AM/Ay = 0.2) during vertical motion with various vertical Mach
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Fig. 9 Steady pressure distribution c, for the NACA 0012 airfoil in
transonic inhomogeneous flow (My = 0.7, AM/Ay = 0.2,and o = 0 deg).

maximum in lift is weakened. This is caused by the dominance of
the increasing relative angle of attack over the shear wind and the
smaller available time to build up the extremum. Furthermore, it is
remarkable that the unsteady behavior of the moment coefficient is
approximated well by the quasi-steady one.

In the transonic region, the idealized shear wind is investigated
for the flight Mach number M =0.7. With regard once again to
the reference case (AM /Ay =0.2 and « = 0 deg) in comparison to
homogeneous incoming flow with M, = (M; + M,)/2=0.75, the
pressure distributions given in Fig. 9 result, referred to My =0.7.
For homogeneous flow, a weak shock occurs at about 25% of the
airfoil chord. In inhomogeneousflow, the stagnation point is shifted
downwards on the lower side. The velocity on the lower side is
reduced, and the shock vanishes. On the upper side, the velocity
and, with that, the pressure minimum increase. A shock results at
about45% of the airfoil chord. As in the subsoniccase, an additional
positivelift and anegative pitching moment develop, but their values
change much more than in the subsonic case. Regarding the solution

on the fine grid with 21,200 cells only small deviations from the
solution for the standard grid can be detected. The corresponding
coefficientsare ¢c; =0.1737and c,, = —0.02175 for the standard grid
and ¢; =0.1755 and ¢,, = —0.02211 for the fine grid.

As in the subsonicregime, the shear wind gradientis one impor-
tant parameter. The difference of the pressure distribution Ac, be-
tween the inhomogeneous and the homogeneous (M, =0.75) case
is significantly influenced by the gradient, as depicted in Fig. 10
for AM /Ay =0.1, 0.2, and co. Higher gradients lead to higher de-
viations Ac,, from the homogeneous flow. On the upper side, the
shock strength increases, and the shock moves downstream. Analo-
gously, the pressure minimum on the lower side is reduced. Again,
the influence on the upper side is higher than on the lower side as
already detected in the subsonic flow region. The differences be-
tween AM /Ay =0.2 and oo are small. For increasing gradients,
the values for the Mach number jump are asymptotically reached.
Because of the influence of the shocks, the occurring changes are
higher than in the subsonic case. Varying the position of the airfoil
in the shear wind, the same tendenciesas in the subsonicregime can
be observed, but again the changes are of higher magnitude.

With respect to the angle of attack as a further important param-
eter, the difference Ac, between inhomogeneous (AM /Ay =0.2)
and corresponding homogeneous flow is analyzed for « =0, 1, and
2 deg (Fig. 11). With an increasein angle of attack, Ac,, is increased
on the upper side and decreased on the lower side. In comparison
to the homogeneous flow, a slightly stronger shock and the shock
displacement downstream on the upper side are significant.

Microburst

Initially, the microburst was defined by Fujita® as a downwind
that impacts on the ground and bursts out to hazardous horizontal
winds with a horizontal extension lower than 4 km. The lifetime

07
0.6
05 7
0.4 F

0.3 F
0.2 F
0.1k

/gi“ \’
/. 1 upperside
1

T

Al

My

Acp

o
il
N

T
e s

e
\

0.1 N
0.2 <
0.3 | lower side

----- AM/AY=0.1
04F—— 1 1 AM/Ay=0.2
05 F ——— AM/AY= o M
0.6 E——d

0 0.25 0.5 0.75 1
X

Fig. 10 Difference in the pressure coefficient Ac, between inhomoge-
neous (M; = 0.7, M,, = 0.8) and homogeneous (M = 0.75) steady flow
with o = 0 deg for different shear wind gradients AM/Ay.

1.6 E I
1.4 f_ _____ 0=0°
Foloorrmernenennn —1° — =
1.2 _‘ “:;., 1
Pl o= , '| upper side
-1F o T
E | ' My
0.8 F HE i
o -0.6 E ::/\l' :
R A | N
- = : t
0.4 2 p i - {_@
02 F , 1 l
+
E m
F lower side
0.4 B N N L
0 0.25 0.5 0.75 1

Fig. 11 Difference in the pressure coefficient Ac, between inhomoge-
neous (M; = 0.7, M,, = 0.8) and homogeneous (M = 0.75) steady flow
with AM/Ay = 0.2 for different angles of attack a.



WEISHAUPL AND LASCHKA

of microbursts lies in the range of 2-5 min. The changing wind
conditionsduring the flight througha microburst,namely, the strong
downwind combined with the rapid change from head- to tailwind,
are difficult for the pilot to manage. Adequate models describing
the characteristic flowfields are needed for microburst prediction
and identification and for flight performance and control during
flights through microbursts. Models based on the potential theory
using vortex rings such as the model of Schultz,'* which is applied
here, are suitable. In this model a vortex ring parallel to the ground
surface is used. To simulate the ground itself, a mirrored vortex
ring of same strength is introduced (see Fig. 12). The velocity field
obtained from the potentialmodel is corrected inside the vortex core
with a damping factor to consider viscous effects.

The velocity components are derived from the stream function W,
dependingon the radius R of the vortex ring, the diameter of the vis-
cous core d, the circulation of the vortex ring I', and the altitude of
the vortex ring above the ground z. The correspondingequations are
givenin Refs. 14 and 32. To simulate a realistic flowfield, the values
of the parameters are chosenaccordingto the data of the Dallas-Fort
Worth microburst'* causing the crash of an aircraft in Dallas 1985.
With an airfoil chord of 5 m as reference length, the dimensionless
parameters for the simulation here are fixed to R =100, d =60,
I' =4, and z = 140. For the presented two-dimensional Euler cal-
culations, the most critical case, namely, the flight in the plane that
contains the central axis of the microburst, is regarded.

The numerical simulation of the flight through the microburst is
realized as depicted in Fig. 13. The discretized evaluation regime
around the NACA 0012 airfoil (the whole grid) is moved through the
microburst field along the flight path with the flight Mach number
M. The freestream velocity values at the far-field boundaries are
determined from the potential model for the microburst, dependent

central axis
I viscous core

I /

vortex ring
+ Y LR /
“y

Fig. 12 Potential model for a microburst from Ref. 14.
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Fig. 13 Numerical simulation of the microburst.
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on the actual boundary position. In this case, the unsteady simula-
tion is started directly with the undisturbed values obtained from the
microburstmodel. A larger discretized evaluationregion is not nec-
essary because the influence of the inhomogeneous flow on the air-
foil decreases with increasing distance. The flight starts at x, = 300,
ends at x; = —300, and takes place at a constantaltitudeof a = 115.

During the flight, the microburst-inducedcomponents of horizon-
tal and vertical velocity in the altitude of the flight path are important
(see Fig. 14). The horizontal velocity (Fig. 14a) firstleads to a head-
wind, increasing to a maximum and afterwards going down to zero,
and in the next phase to an analogous tailwind. With regard to the
vertical velocity (Fig. 14b), a small upwind component in the be-
ginning is followed by a strong downwind component and finally
again by an upwind component. Therefore, during the flight, first
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simulated microburst.
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the angle of attack (Fig. 14c) increases, then strongly decreases,
and in the end increases again. During the headwind, the whole hor-
izontal velocity is increased, and, therefore, smaller absolute values
for the angle of attack result than for tailwind. On the other hand,
the higher horizontal velocity in the headwind region causes higher
absolute values for the pressure and force coefficients due to the
higher dynamic pressure.

The horizontal flight of a NACA 0012 airfoil at zero angle of
attack and a subsonic Mach number of M = 0.4 is considered. For
evaluation of the coefficients, the constant horizontal flight Mach
number is chosen as reference value. The unsteady characteristics
of the lift and moment coefficient (Fig. 15) reflect the behavior of
the vertical wind and of the angle of attack, respectively, with a
certain time delay. The position of the airfoil x» correspondsto a
characteristictime 7., which is also given in Fig. 15. The horizontal
velocity component has only a small influence on the flowfield and
aerodynamic forces because the maximum horizontal velocity in-
duced by the microburstis only about 3% of the velocity belonging
to the flight Mach number M. Against that, the maximum vertical
componentinduces a significant change in angle of attack of nearly
2.5 deg. Withrespectto the extreme values of the lift and moment co-
efficient belongingto the extreme values of negative angle of attack,
the values for the tailwind are smaller than for the headwind. This
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Fig. 17 Unsteady characteristics of the lift and moment coefficient
¢; and ¢, for subsonic flight (M = 0.4) with a = 2 deg through the
simulated microburst.

results from the higher dynamic pressure in the headwind region,
which has more influence than the higher values of angle of attack
for the tailwind. In the region with positive angles of attack, the dif-
ference between the values in head- and tailwind is small because
the force coefficients are small too. The strong variationsin lift are
important for flight safety, especially with rapid changes between
nosedown and taildown moments, which have to be consideredcare-
fully for flight control. To visualize the flowfield, the distribution of
the vertical velocity and the streamlines coming up from the mi-
croburst are shown in Fig. 16 for two different characteristic times
7. Figure 16a shows a case in the beginning of the penetration with
up- and headwind. In Fig. 16b, the strong downwind combined with
a headwind can be detected.

The characteristicsof lift and moment coefficient for an angle of
attack of 2 deg (Fig. 17) are similar to those for 0 deg, shifted for the
lift coefficientto more positive values and for the moment coefficient
to more negative values. Again, the coefficients are higher for the
headwind than for the tailwind due to the higher dynamic pressure.
Compared against « =0 deg, for « =2 deg, the difference in the
values for the extreme positive angles of attack is higher than for
the extreme negative ones due to the higher absolute values of the
force coefficients in this region. The time delay is hardly influenced
by the change in angle of attack.

Conclusions
Inhomogeneousflows occurring in several atmospheric phenom-
ena may lead to dangerous situations for flight safety. As concerns
the field of aerodynamics, only a few investigations have been
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undertaken to understand and to quantify the influence of inho-
mogeneous flows. Therefore, numerical simulations are performed
concerning two cases of inhomogeneous flow for a NACA 0012
airfoil using an Euler code. With regard to an idealized shear wind,
it can be seen that a velocity gradient in incoming flow has an
important influence on the pressure distribution of the airfoil. For
the presented cases, a positive gradient causes a positive additional
lift and a negative moment around the 25% axis. In the transonic
region, an incoming flow with velocity gradient influences consid-
erably shock strength and shock position. The velocity regime, the
velocity gradient, the position of the airfoil in the shear wind field,
the angle of attack, and, in the unsteady case, the airfoil vertical ve-
locity are studied as governing parameters concerning shear winds.
As arealistic example, the flight through a microburst is analyzed,
using a potential model for describing the incoming flowfield. The
simulation gives rapid changes in lift and moment, mostly governed
by the vertical velocity. These changes may be dangerous and can
lead to loss of control during flight. Therefore, strong efforts have to
bemade to analyzethis importantfield of aerodynamicsfurther. Two
major points for future work are investigationsof three-dimensional
flows around wings or aircraft configurations and the consideration
of viscous effects using a Navier-Stokes code.

References

ISchinzer, G., “Influence of Windshear, Downdraft and Turbulence
on Flight Safety,” CP-470, AGARD, 1989, pp. 7-1-7-19.

2Jacobi, C., Siemer, A. H., and Roth, R., “Starke Windscherungen unter
nicht extremen meteorologischen Bedingungen,” Sicherheit im Luftverkehr,
Deutsche Forschungsgemeinschaft, G. Schanzer, Wiley-VCH, Weinheim,
Germany, 1997, pp. 111-123.

3Reiter, E. R., Meteorologie der Strahlstrome (Jet Streams), Springer-
Verlag, Wien, Austria, 1961, pp. 1-3, 105-112,206-212.

4Krauspe, P., “Beitrige zur Lingsbewegung von Flugzeugen in Wind-
scherungen,” Ph.D. Thesis, Lehrstuhl fur Flugmechanik, Technische Uni-
versitat Braunschweig, Braunschweig, Germany, June 1983.

5Ruscheweyh, H., Dynamische Windwirkung an Bauwerken, Band 2:
Praktische Anwendungen, Bauverlag GmbH, Wiesbaden, Germany, 1982,
pp- 15-17.

6Zhu, S., and Etkin, B., “Model of the Wind Field in a Downburst,” Journal
of Aircraft, Vol. 22, No. 7, 1985, pp. 595-601.

7Lundgren, T. S., Yao, J., and Mansour, N. N., “Microburst Modelling
and Scaling,” Journal of Fluid Mechanics, Vol. 239, June 1992, pp. 461~
488.

8Bobbitt, R. B., and Howard, R. M., “Escape Strategies for Turboprop
Aircraft in Microburst Windshear,” Journal of Aircraft, Vol. 29, No. 5, 1992,
pp. 745-752.

9Grantham, W. J., Roetcisoender, G. G., and Parks, E. K., “DFW Mi-
croburst Model Based on AA-539 Data,” Journalof Aircraft, Vol.27,No. 11,
1990, pp. 917-922.

0Ghazi, M., and Al-Bahi, A., “Effect of Atmospheric Disturbances
on Airplane Response,” AIAA Paper 92-4340, 1992.

""McCarthy, J., Wilson, J., and Fujita, T. T., “The Joint Airport Weather
Studies JAWS) Project,” Bulletin of the American Meteorological Society,
Vol. 63, No. 1, 1982, pp. 15-22.

Hjelmfelt, M. R., Orville, H. D., Roberts, R. D., Chen, J. P,, and
Kopp, E J., “Observational and Numerical Study of a Microburst Line-
Producing Storm,” Journal of the Atmospheric Sciences, Vol. 46, No. 17,
1989, pp. 2731-2743.

BPélegrin, M., “Aspekte der Flugsicherheit bei der Wechselwirkung
zwischen Flugzeug und Atmosphire,” Sicherheit im Luftverkehr, Deutsche
Forschungsgemeinschaft, G. Schianzer, Wiley-VCH, Weinheim, Germany,
1997, pp. 43-80.

14Schultz, T. A., “Multiple Vortex Ring Model of the DFW Microburst,”
Journal of Aircraft, Vol. 27, No. 2, 1990, pp. 163-168.

SWhite, R. J., “Effect of Wind Shear on Airspeed During Airplane Land-
ing Approach,” Journal of Aircraft, Vol. 29, No. 2, 1992, pp. 237-242.

1Tvan, M., “A Ring-Vortex Downburst Model for Flight Simulations,”
Journal of Aircraft, Vol. 23, No. 3, 1986, pp. 232-236.

17Vicroy, D. D., “Assessment of Microburst Models for Downdraft Esti-
mation,” Journal of Aircraft, Vol. 29, No. 6, 1992, pp. 1043-1048.

18Psiaki, M. L., and Stengel, R. F., “Optimal Flight Paths Through Mi-
croburst Wind Profiles,” Journal of Aircraft, Vol. 23, No. 8, 1986, pp. 629-
635.

19Avila de Melo, D., and Hansman, R. J., “Analysis of Aircraft Perfor-
mance During Lateral Maneuvering for Microburst Avoidance,” Journal of
Aircraft, Vol. 28, No. 12, 1991, pp. 837-842.

20Erost, W., Chang, H., McCarthy, J., and Elmore, K., “Aircraft Perfor-
mance in a JAWS Microburst,” Journal of Aircraft, Vol. 22, No. 7, 1985, pp.
561-567.

2IRuden, P, “Theorie des Tragfliigelprofiles in der Nachbarschaft
sprunghafter Gesamtdruckanderungen,” Jahrbuch der deutschen Luftfahrt-
forschung, 1939, pp. 198-1113.

22Tsien, H., “Symmetrical Joukowsky Airfoils In Shear Flow,” Quaterly
of Applied Mathematics, Vol. 1, No. 2, 1943, pp. 130-148.

23Weissinger, J., “Linearisierte Profiltheorie bei ungleichformiger
Anstromung, Teil II: Schlanke Profile,” Acta Mechanica, Vol. 13, Springer-
Verlag, Wien, Austria, 1972, pp. 133-154.

24Ludwig, G. R., and Erickson, J. C., “Airfoils in Two-Dimensional
Nonuniformly Sheared Slipstreams,” Journal of Aircraft, Vol. 8, No. 11,
1971, pp. 874-880.

ZSGupta, A. K., and Sharma, S. C., “Cambered Joukowsky Airfoil in a
Nonuniform Weak Shear Flow,” Journal of Aircraft, Vol. 11, No. 10, 1974,
pp. 653-656.

26Kiichemann, D., The Aerodynamic Design of Aircraft, Pergamon Press,
Oxford, England, U.K., 1978, pp. 305-313.

2TBrenneis, A., “Berechnung instationdarer zwei- und dreidimensionaler
Stromungen um Tragfliigel mittels eines impliziten Relaxationsverfahrens
zur Losung der Eulergleichungen,” Verein deutscher Ingenieure Fortschritts-
berichte, Reihe 7: Stromungstechnik, Nr. 165, Verein Deutscher Ingenieure
Verlag, Diisseldorf, Germany, 1989.

28Habibie, I. A., “Eulerlosungen fiir instationir lingsbeschleunigte
Stromungen um Tragfliigelprofile,” Ph.D. Thesis, Lehrstuhl fiir Fluid-
mechanik, Technische Universitat Miinchen, Miinchen, Germany, July 1994.

29Fletcher, C. A. I., ComputationalTechniques for Fluid Dynamics, Vol. 2,
Springer-Verlag, Berlin, 1988, pp. 48, 49.

30Rochholz, H., “Eulerlosungen fiir den Separationsvorgang von
Trager/Orbiter-Systemen im Hyperschall,” Ph.D. Thesis, Lehrstuhl fiir Flu-
idmechanik, Technische Universitait Miinchen, Miinchen, Germany, Aug.
1994.

3lYee, H. C., “Upwind and Symmetric Shock-Capturing Schemes,”
NASA TM 89464, 1987.

32Weishaupl, C., “Tragfligelprofile in inhomogener Stromung,” Ph.D.
Thesis, Lehrstuhl fiir Fluidmechanik, Technische Universitat Miinchen,
Miinchen, Germany, Oct. 1998.

33Hirsch, C., Numerical Computation of Internal and External Flows,
Vol. 2, Wiley, New York, 1995, pp. 138-149, 176-195.

34Kroll, N., “Berechnung von Stromungsfeldern um Propeller und Ro-
toren im Schwebeflug durch die Losung der Euler-Gleichungen,” DLR-
FB 89-37, Ph.D. Thesis, Institut fiir Entwurfsaerodynamik, Deutsche
Forschungsanstalt fir Luft- und Raumfahrt, Braunschweig, Germany, June
1989.

35Thompson, J., Warsi, Z., and Mastin, C., Numerical Grid Generation,
Foundations and Applications, North-Holland, Amsterdam, 1985, pp. 193-
202.

36Sonar, T., “Grid Generation Using Elliptic Partial Differential Equa-
tions,” DFVLR-FB 89-15, 1989.

37Eberle, A., “MBB-EUFLEX. A New Flux Extrapolation Scheme Solv-
ing the Euler Equations for Arbitrary 3-D Geometry and Speed,” TR MBB-
LKE122/S/PUB/140, Miinchen, 1984.

38Heller, G., “Aerodynamik von Deltafliigelkonfigurationen bei Schieben
und Gieren,” Ph.D. Thesis, Lehrstuhl fiir Fluidmechanik, Technische Uni-
versitat Miinchen, Miinchen, Germany, May 1997.

39Fyjita, T. T., “Tornadoes and Downbursts in the Context of Generalized
Planetary Scales,” Journal of the Atmospheric Sciences, Vol. 38, No. 8, 1981,
pp. 1511-1534.



